首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The efficiency of C(4) photosynthesis under low light conditions: assumptions and calculations with CO(2) isotope discrimination
Authors:Ubierna Nerea  Sun Wei  Cousins Asaph B
Institution:School of Biological Sciences, Molecular Plant Sciences, Washington State University, Pullman, WA 99164-4236, USA. nerea.ubiernalopez@wsu.edu
Abstract:Leakiness (Φ), the proportion of carbon fixed by phosphoenolpyruvate carboxylation that leaks out of the bundle-sheath cells, determines C(4) photosynthetic efficiency. Large increases in Φ have been described at low irradiance. The underlying mechanisms for this increase remain uncertain, but changes in photorespiration or the energy partitioning between the C(4) and C(3) cycles have been suggested. Additionally, values of Φ at low light could be magnified from assumptions made when comparing measured photosynthetic discrimination against (13)C (Δ) with the theoretical formulation for Δ. For example, several simplifications are often made when modelling Δ to predict Φ including: (i) negligible fractionation during photorespiration and dark respiration; (ii) infinite mesophyll conductance; and (iii) CO(2) inside bundle-sheath cells (C(s)) is much larger than values in mesophyll cells (C(m)). Theoretical models for C(4) photosynthesis and C(4) Δ were combined to evaluate how these simplifications affect calculations of Δ and Φ at different light intensities. It was demonstrated that the effects of photorespiratory fractionations and mesophyll conductance were negligible at low light. Respiratory fractionation was relevant only when the magnitude of the fractionation factor was artificially increased during measurements. The largest error in estimating Φ occurred when assuming C(s) was much larger than C(m) at low light levels, when bundle-sheath conductance was large (g(s)), or at low O(2) concentrations. Under these conditions, the simplified equation for Δ overestimated Φ, and compromised comparisons between species with different g(s), and comparisons across O(2) concentrations.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号