首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mechanisms of the light-dependent induction of cell death in tobacco plants with delayed senescence
Authors:Wingler Astrid  Brownhill Emily  Pourtau Nathalie
Institution:Department of Biology, University College London, Gower Street, London WC1E 6BT, UK. a.wingler@ucl.ac.uk
Abstract:The relationship between leaf senescence and cell death was investigated using tobacco with delayed senescence due to auto-regulated production of cytokinin (SAG12-IPT). Although leaf senescence ultimately results in cell death, the results show that senescence and cell death can be uncoupled: in nutrient-deficient, but not in fertilized SAG12-IPT plants, necrotic lesions were detected in old, but otherwise green leaves. By contrast, wild-type leaves of the same age were yellow, but not necrotic. Chlorophyll fluorescence analysis revealed an over-reduction of the electron transport chain in old SAG12-IPT leaves, in combination with characteristic spatial patterns of minimum fluorescence (F0) quantum efficiency of open photosystem II centres (F(v)/F(m)) and non-photochemical quenching (NPQ), as determined by fluorescence imaging. The same patterns of F0, F(v)/F(m), and NPQ were induced by incubation of leaf discs from nutrient-deficient SAG12-IPT plants under illumination, but not in the dark, indicating that light-dependent reactions were responsible for the cell death. RT-PCR analysis showed that the pathogenesis-related (PR) genes PR-1b and PR-Q were strongly induced in old SAG12-IPT tobacco leaves with necrotic lesions. In addition, the ethylene-synthesis gene ACO was induced before lesions became visible in SAG12-IPT. It is proposed that over-reduction of the electron transport chain in combination with decreased electron consumption due to nutrient-deficiency led to oxidative stress, which, mediated by ethylene formation, can induce PR gene expression and hypersensitive cell death. Probably as a consequence of inefficient nutrient mobilization, flower development was prematurely aborted and reproduction thereby impaired in nutrient-deficient SAG12-IPT plants.
Keywords:
本文献已被 PubMed Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号