首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Photosynthesis, Respiration, and Carbon Assimilation in Water-Stressed Maize at Two Oxygen Concentrations
Authors:LAWLOR  D W; FOCK  D H
Abstract:Photosynthesis decreased with decreasing leaf water potentialas a consequence of stomatal closure and possibly non-stimataleffects of severe stress. Assimilation ceased at c. 16x 105Pa. Photo-respiration, in 21% O2, was small in relation to assimilationin unstressed leaves and decreased as leaf water potential fellbut it was much larger in proportion to photosynthesis at severestress. Decreasing the O2 content to 1.5% increased photosynthesisslightly and decreased photo-respiration but did not changethe stress at which assimilation stoped. Dark respiration wasinsensitive to both O2 and stress. Less 14C accumulated in stressedleaves but in 21% O2 a greater proportion of it was in aminoacids, particularly glycine and serine. 1.5% O2 decreased the14C in glycine to 10% and in serine to 50% of their levels in21% O2. In both O2 concentrations the proportion of 14C in serineincreased only at the most severe stress. Gas exchange measurementsand changes in the 14C flux to glycine are interpreted as theresult of glycolate pathway metabolism increasing as a proportionof assimilation in stressed leaves in high O2. The small absoluterate of photorespiration in high O2 and at low leaf water potentialmay be due to slow rates of glycine decarbodylation as wellas efficient fixation of any CO2 produced. Serine is synthesizedby an O2-sensitive pathway and an O2-insensitive pathway, whichis most active at severe stress. Synthesis of alanine competeswith that of glycine and serine for a common precursor suppliedby the photo-synthetic carbon reduction cycle. The relativespecific radioactivities of aspartate and alanine suggest thatthey are derived from a common precursor pool, probably pyruvatefrom 3-PGA. The amounts of 3-PGA, aspartate, malate, alanine,and sucrose decreased with increasing water stress as a consequenceof slower assimilation and pool filling. Other amino acids,glycine, serine, glutamate, and proline, accumulated at lowwater potential possibly due to increased synthesis and slowerrates of consumption. Changes in pool sizes, carbon fludes,and specific activities of metabolites are related to the mechanismof C4 photosynthesis and current concepts of glycolate pathwaymetabolism.
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号