首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Interaction of soil moisture and elevated CO2 on the above-ground growth rate, root length density and gas exchange of turves from temperate pasture
Authors:Newton  PCD; Clark  H; Bell  CC; Glasgow  EM
Abstract:Interactions between water availability and elevated atmosphericCO2 concentrations have the potential to be important factorsin determining future forage supply from temperate pastures.Using large turves from an established pasture, the responseof these communities at 350 or 700 l l–1 CO2 to a soilmoisture deficit and to recovery from the deficit in comparisonto turves that were well-watered throughout was measured. Priorto this experiment the turves had been exposed to the CO2 treatmentsfor 324 d. Net CO2 exchange continued at elevated CO2 even when the volumetricsoil moisture content was less than 0.10 m3 m–3 soil;at the same moisture deficit gas exchange at ambient CO2 waszero. The additional carbon fixed by the elevated CO2 turveswas primarily allocated below-ground as shown by the maintenanceof root length density at the same level as in well-wateredturves. When the dry turves were rewatered there was compensatorygrowth at ambient CO2 so that the above-ground growth rate exceededthat of turves that had not experienced a moisture deficit.At the start of this experiment, the turves that were growingat 700 l I–1 CO2 had a greater proportion of legume (principallywhite clover, Trifolium repens L.) in the harvested herbage.There was a trend for the legume content at elevated CO2 tobe reduced under a soil moisture deficit. The results indicate different strategies in response to soilmoisture deficits depending on the CO2 concentration. At ambientCO2, growth stopped, but plants were able to respond stronglyon rewatering; while at elevated CO2 growth continued (particularlybelow-ground), but no additional growth was evident on rewatering.Ecosystem gas exchange measurements taken at the end of theexperiment (after 429 d of exposure to CO2) showed 33% moreCO2 was fixed at elevated CO2 with only a small (12%) and nonsignificantdownward regulation. Key words: Carbon dioxide, climate change, grassland, gas exchange, soil moisture deficit
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号