首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Development of molecular markers and preliminary investigation of the population structure and mating system in one lineage of black morel (Morchella elata) in the Pacific Northwestern USA
Authors:Pagliaccia Deborah  Douhan Greg W  Douhan LeAnn  Peever Tobin L  Carris Lori M  Kerrigan Julia L
Institution:Department of Plant Pathology and Microbiology, University of California, Riverside, CA, USA.
Abstract:Phylogenetic analysis of LSU/ITS sequence data revealed two distinct lineages among 44 morphologically similar fruiting bodies of natural black morels (Morchella elata group) sampled at three non-burn locations in the St Joe and Kanisku National Forests in northern Idaho. Most of the sampled isolates (n = 34) represented a dominant LSU/ITS haplotype present at all three sites and identical to the Mel-12 phylogenetic lineage (GU551425) identified in a previous study. Variation at 1-3 nucleotide sites was detected among a small number of isolates (n = 6) within this well supported clade (94%). Four isolates sampled from a single location were in a well supported clade (97%) distinct from the dominant haplotypes and may represent a previously un-sampled, cryptic phylogenetic species. Species-specific SNP and SCAR markers were developed for Mel-12 lineage isolates by cloning and sequencing AFLP amplicons, and segregation of AFLP markers were studied from single ascospore isolates from individual fruiting bodies. Based on the segregation of AFLP markers within single fruiting bodies, split decomposition analyses of two SCAR markers, and population genetic analyses of SNP, SCAR, and AFLP markers, it appears that members of the Morchella sp. Mel-12 phylogenetic lineage are heterothallic and outcross in nature similar to yellow morels. This is the first set of locus-specific molecular markers that has been developed for any Morchella species, to our knowledge. These markers will prove to be valuable tools to study mating system, gene flow and genetic structure of black morels at various spatial scales with field-collected fruiting bodies and eliminate the need to culture samples in vitro.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号