首页 | 本学科首页   官方微博 | 高级检索  
   检索      


ATTEMPTS TO OBTAIN BACTERIA-FREE PLANTS OF PSYCHOTRIA PUNCTATA (RUBIACEAE): GROWTH AND ROOT FORMATION IN CALLUS CULTURES
Authors:Clifford E LaMotte  Nels R Lersten
Institution:Department of Botany and Plant Pathology, Iowa State University, Ames, 50010
Abstract:Attempts were made to obtain bacteria-free plants of Psychotria punctata from tissue cultures. Stem explants and callus derived from them were induced to form roots but failed to form buds on Linsmaier and Skoog medium and 96 chemical modifications of it, including most of those known to induce bud formation in other species. Roots formed with ample IAA (2 mg/liter or more) and a low kinetin concentration (0.25 or 0.50 mg/liter). Adenine inhibited root formation in these media, but tyrosine did not. Tyrosine did lower the percentage of calluses commencing growth. When enzyme-hydrolyzed lactalbumin (1.3 g/liter), kinetin (0.5 mg/liter) and IAA (5 mg/liter) were added to Linsmaier and Skoog medium modified by decreasing inorganic nitrogen and increasing inorganic phosphate, callus grew at the fastest rate observed (increasing threefold in fresh weight in three weeks) and formed numerous roots. This was adopted as the stock callus medium. Casein hydrolysates also stimulated growth but less so than lactalbumin hydrolysate. When lactalbumin hydrolysate or a casein hydrolysate lacking tryptophan was supplied, growth occurred without added auxin if sufficient cytokinin was added. Cytokinin was required at unusually high concentration and was tolerated at still higher concentration. Formation, elongation, and branching of roots persisted on a saturated solution of BA which inhibited callus growth about 70 % and delayed callus senescence. Light caused earlier callus senescence after growth had ceased but did not affect callus growth or root formation. Light-induced senescence was prevented by a high cytokinin concentration.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号