首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Inhibition of homologous recombination by hyperthermia shunts early double strand break repair to non-homologous end-joining
Authors:Judith WJ Bergs  Przemek M Krawczyk  Tijana Borovski  Rosemarie ten Cate  Hans M Rodermond  Jan Stap  Jan Paul Medema  Jaap Haveman  Jeroen Essers  Chris van Bree  Lukas JA Stalpers  Roland Kanaar  Jacob A Aten  Nicolaas AP Franken
Institution:1. Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine, Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands;2. van Leeuwenhoek Centre for Advanced Microscopy – AMC, Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, The Netherlands;3. Department of Cell Biology & Genetics, Cancer Genomics Center, Department of Radiation Oncology, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
Abstract:In S and G2 phase mammalian cells DNA double strand breaks (DSBs) can potentially be repaired by homologous recombination (HR) or non-homologous end-joining (NHEJ). Results of several studies suggest that these two mechanistically distinct repair pathways can compete for DNA ends. Because HR and NHEJ differ with respect to error susceptibility, generation of chromosome rearrangements, which are potentially carcinogenic products of DSB repair, may depend on the pathway choice. To investigate this hypothesis, the influence of HR and NHEJ inhibition on the frequencies of chromosome aberrations in G2 phase cells was investigated. SW-1573 and RKO cells were treated with mild (41 °C) hyperthermia in order to disable HR and/or NU7441/cisplatin to inactivate NHEJ and frequencies of chromosomal fragments (resulting from unrepaired DSBs) and translocations (products of erroneous DSB rejoining) were studied using premature chromosome condensation (PCC) combined with fluorescence in situ hybridization (FISH).It is shown here that temporary inhibition of HR by hyperthermia results in increased frequency of ionizing-radiation (IR)-induced chromosomal translocations and that this effect is abrogated by NU7441- or cisplatin-mediated inhibition of NHEJ. The results suggest that in the absence of HR, DSB repair is shifted to the error-prone NHEJ pathway resulting in increased frequencies of chromosomal rearrangements. These results might be of consequence for clinical cancer treatment approaches that aim at inhibition of one or more DSB repair pathways.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号