首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Vampires in the oceans: predatory cercozoan amoebae in marine habitats
Authors:Cédric Berney  Sarah Romac  Frédéric Mahé  Sébastien Santini  Raffaele Siano  David Bass
Institution:1.Department of Life Sciences, The Natural History Museum, London, UK;2.Evolution du Plancton et PaléOcéans - UMR7144, Station Biologique de Roscoff, CNRS - Université Paris VI, Roscoff, France;3.Information Génomique et Structurale - UMR7256, CNRS - Aix-Marseille Université, Marseille, France;4.Ifremer - Centre de Brest, DYNECO/Pelagos, BP70, Plouzané, France
Abstract:Vampire amoebae (vampyrellids) are predators of algae, fungi, protozoa and small metazoans known primarily from soils and in freshwater habitats. They are among the very few heterotrophic naked, filose and reticulose protists that have received some attention from a morphological and ecological point of view over the last few decades, because of the peculiar mode of feeding of known species. Yet, the true extent of their biodiversity remains largely unknown. Here we use a complementary approach of culturing and sequence database mining to address this issue, focusing our efforts on marine environments, where vampyrellids are very poorly known. We present 10 new vampyrellid isolates, 8 from marine or brackish sediments, and 2 from soil or freshwater sediment. Two of the former correspond to the genera Thalassomyxa Grell and Penardia Cash for which sequence data were previously unavailable. Small-subunit ribosomal DNA analysis confirms they are all related to previously sequenced vampyrellids. An exhaustive screening of the NCBI GenBank database and of 454 sequence data generated by the European BioMarKs consortium revealed hundreds of distinct environmental vampyrellid sequences. We show that vampyrellids are much more diverse than previously thought, especially in marine habitats. Our new isolates, which cover almost the full phylogenetic range of vampyrellid sequences revealed in this study, offer a rare opportunity to integrate data from environmental DNA surveys with phenotypic information. However, the very large genetic diversity we highlight within vampyrellids (especially in marine sediments and soils) contrasts with the paradoxically low morphological distinctiveness we observed across our isolates.
Keywords:BioMarKs  environmental clones  Penardia  SSU rDNA  Thalassomyxa  Vampyrellida
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号