首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Energy-efficient indoor search by swarms of simulated flying robots without global information
Authors:Timothy Stirling  Steffen Wischmann  Dario Floreano
Institution:1.Laboratory of Intelligent Systems (LIS),Ecole Polytechnique Fédérale de Lausanne (EPFL),Lausanne,Switzerland
Abstract:Swarms of flying robots are a promising alternative to ground-based robots for search in indoor environments with advantages such as increased speed and the ability to fly above obstacles. However, there are numerous problems that must be surmounted including limitations in available sensory and on-board processing capabilities, and low flight endurance. This paper introduces a novel strategy to coordinate a swarm of flying robots for indoor exploration that significantly increases energy efficiency. The presented algorithm is fully distributed and scalable. It relies solely on local sensing and low-bandwidth communication, and does not require absolute positioning, localisation, or explicit world-models. It assumes that flying robots can temporarily attach to the ceiling, or land on the ground for efficient surveillance over extended periods of time. To further reduce energy consumption, the swarm is incrementally deployed by launching one robot at a time. Extensive simulation experiments demonstrate that increasing the time between consecutive robot launches significantly lowers energy consumption by reducing total swarm flight time, while also decreasing collision probability. As a trade-off, however, the search time increases with increased inter-launch periods. These effects are stronger in more complex environments. The proposed localisation-free strategy provides an energy efficient search behaviour adaptable to different environments or timing constraints.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号