Escherichia coli alkaline phosphatase. An analysis of transient kinetics |
| |
Authors: | S. E. Halford |
| |
Affiliation: | Molecular Enzymology Laboratory, Department of Biochemistry, University of Bristol, Bristol BS8 1TD, U.K. |
| |
Abstract: | 1. The hydrolysis of 2,4-dinitrophenyl phosphate by Escherichia coli alkaline phosphatase at pH5.5 was studied by the stopped-flow technique. The rate of production of 2,4-dinitrophenol was measured both in reactions with substrate in excess of enzyme and in single turnovers with excess of enzyme over substrate. It was found that the step that determined the rate of the transient phase of this reaction was an isomerization of the enzyme occurring before substrate binding. 2. No difference was observed between the reaction after mixing a pre-equilibrium mixture of alkaline phosphatase and inorganic phosphate, with 2,4-dinitrophenyl phosphate at pH5.5 in the stopped-flow apparatus, and the control reaction in which inorganic phosphate was pre-equilibrated with the substrate. Since dephosphorylation is the rate-limiting step of the complete turnover at pH5.5, this observation suggests that alkaline phosphatase can bind two different ligands simultaneously, one at each of the active sites on the dimeric enzyme, even though only one site is catalytically active at any given time. 3. Kinetic methods are outlined for the distinction between two pathways of substrate binding, which include an isomerization either of the free enzyme or of the enzyme-substrate complex. |
| |
Keywords: | |
|
|