首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Physiological and biochemical analysis of the glutamine synthetase-impaired mutants of the nitrogen-fixing cyanobacteriumNostoc muscorum
Authors:Renu Srivastava  Dr D V Amla
Institution:(1) Plant Biotechnology Division, National Botanical Research Institute, 226 001 Lucknow, India
Abstract:Three types of glutamine synthetase (GS)-impaired mutants (gln) ofNostoc muscorum were isolated as ethylenediamine (EDA)-resistant phenotypes and characterized with respect to heterocyst development, nitrogen fixation, ammonium metabolism, photosynthetic characteristics, and glutamine synthetase activity. The criterion for categorizing the mutants was the extent of loss of GS activity (both in transferase and biosynthetic assays) compared with wild type; it was 70% in EDA-1, 30% in EDA-2, and more than 90% in EDA-3 strains. The level of nitrogenase activity in mutant strains was proportionate to heterocyst frequency and was found refractory to ammonium and EDA repression. In EDA-resistant strains, development of heterocysts and their spacing pattern remained unaffected and did not respond to treatment of amino acid analogues, drugs, and ammoniacal compounds which otherwise either stimulated or suppressed the number and altered the spacing pattern in wild type. A biphasic pattern of ammonium uptake indicating two transport systems was observed in all the strains except that the Km values for both high- and low-affinity systems were altered in mutant strains. In vivo treatment with MSX or EDA significantly inhibited the GS activity in wild type, whereas mutant strains did not respond to these treatments and were able to liberate NH 4 + continuously into the medium without MSX treatment. During NH 4 + uptake, percentage inhibition of O2 evolution and changes in increase of fluorescence intensity were low in EDA strains compared with wild type. Assessment of GS protein with antibodies against GS and quantitative polyacrylamide gel electrophoresis (PAGE) suggested that loss in specific activity of GS per milligram of extractable protein in EDA mutants was owing to low production of GS-specific protein. SDS-PAGE of purified GS enzyme from all the strains revealed only one polypeptide band of molecular weight of about 51.28 kDa.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号