Acid release,cytoplasmic alkalinization,and chromosome condensation during sea urchin fertilization and amine-lnduced parthenogenesis |
| |
Authors: | Augusto F. Lois Dori J. Neill Edward J. Carroll |
| |
Abstract: | We have studied the relationship between acid release, cytoplasmic alkalinization, and the extent of chromosome condensation during parthenogenetic activation of sea urchin eggs. The relative rate of acid release in Strongylocentrotus purpuratus eggs was determined from pH measurements of egg suspensions. Acid release in inseminated eggs began after a lag of 0.4 min and the relative rate increased 108-fold, declined, and release was essentially complete by 8-min postinsemination. An average of 3.8 ± 0.23 × 10?12moles H+ cell? was released as determined by backtitration with NaOH. Acid release characteristics of eggs parthenogenetically activated with either NH4C1, methylamine ethylamine, n-propylamine, n-butylamine, or benzylamine were qualitatively similar. There was no detectable lag peroid and the increase in relative rate of acid release was directly proportional to the carbon number of the amine used, eg, from 8.3-fold methylamine to 470-fold with benzylamine. The total equivalents of acid released ranged from 0.50–8.2 × 10?12 moles H+·cell? in direct proportion to the concentration of amine used. The degree fo cytoplasmic alkalinization induced as a function of methylamine and benzylamine concentration was determined by pH measurements fo egg homogenates; egg cultures were also prepared for microscopic examination of chromosome condensation. None of the eggs had condensed chromosomes at 0.5-mM methylamine whereas a cytoplasmic alkalinization of 0.6 pH units was observed. Increased methylamine levels up to 10mM resulted in chromiosome condensation in only 20% of the eggs. A similar result was found with benzylamine. We conclude that acid release and cytoplasmic alkalinization during chemical parthenogenesis are insufficient to mimic sperm induction of chromiosome condensation and suggest that an additional factor(s) is required for chromosome condensation by low concentration of amines. |
| |
Keywords: | parthenogenetic activation acid release sea urchin Strongylocentrotus purpurotus |
|
|