首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A Freeze-Fracture Electron Microscope Study of Trichomonas vaginalis Donné and Tritrichomonas foetus (Riedmüller)1
Authors:B M HONIGBERG  DIETER VOLKMANN  ROLF ENTZEROTH  ERICH SCHOLTYSECK
Abstract:Two strains of Trichomonas vaginalis, JH162A, with low pathogenicity, and Balt 44, with high pathogenicity, as well as one highly pathogenic strain, KV-1, of Tritrichomonas foetus were studied by freeze-fracture electron microscopy. The protoplasmic faces (PFs) of the cell membranes of all three strains of both species had similar numbers of intramembranous particles (IMPs); however, the particles in the external faces (EFs) of these membranes were least abundant in Trichomonas vaginalis strain Balt 44 and most numerous in those of strain JH162A of this species. In Tritrichomonas foetus strain KV-1 the number of IMPs in the EF was close to but somewhat lower than that in the mild strain of the human urogenital trichomonad. In both species, the anterior, but not the recurrent, flagella had rosette-like formations, consisting of ~9 to 12 IMPs on both the PFs and EFs. The numbers and distribution of the rosettes appeared to vary among different flagella and in different areas of individual flagella of a single organism belonging to either species. The freeze-fracture electron micrographs provided a more complete understanding of the fine structure of undulating membranes of Trichomonadinae, as represented by Trichomonas vaginalis, and of Tritrichomonadinae (the Tritrichomonas augusta-type), as exemplified by Tritrichomonas foetus, than was gained from previous transmission and scanning electron microscope studies. Typically three longitudinal rows of IMPs on the PF of the recurrent flagellum of Trichomonas vaginalis were noted in the area of attachment of this flagellum to the undulating membrane. The functional aspects of the various structures and differences between certain organelles revealed in the two trichomonad species by the freeze-fracture method are discussed.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号