首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Inhibition of Sphingosine Kinase by Bovine Viral Diarrhea Virus NS3 Is Crucial for Efficient Viral Replication and Cytopathogenesis
Authors:Daisuke Yamane  Muhammad A Zahoor  Yassir M Mohamed  Walid Azab  Kentaro Kato  Yukinobu Tohya  and Hiroomi Akashi
Institution:Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
Abstract:Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid implicated in diverse cellular functions including survival, proliferation, tumorigenesis, inflammation, and immunity. Sphingosine kinase (SphK) contributes to these functions by converting sphingosine to S1P. We report here that the nonstructural protein NS3 from bovine viral diarrhea virus (BVDV), a close relative of hepatitis C virus (HCV), binds to and inhibits the catalytic activity of SphK1 independently of its serine protease activity, whereas HCV NS3 does not affect SphK1 activity. Uncleaved NS2-3 from BVDV was also found to interact with and inhibit SphK1. We suspect that inhibition of SphK1 activity by BVDV NS3 and NS2-3 may benefit viral replication, because SphK1 inhibition by small interfering RNA, chemical inhibitor, or overexpression of catalytically inactive SphK1 results in enhanced viral replication, although the mechanisms by which SphK1 inhibition leads to enhanced viral replication remain unknown. A role of SphK1 inhibition in viral cytopathogenesis is also suggested as overexpression of SphK1 significantly attenuates the induction of apoptosis in cells infected with cytopathogenic BVDV. These findings suggest that SphK is targeted by this virus to regulate its catalytic activity.Bovine viral diarrhea virus (BVDV)2 is an enveloped, positive-sense single-stranded RNA virus classified in the genus Pestivirus of the family Flaviviridae. BVDV establishes persistent infections in cattle populations worldwide. Because BVDV shares virological and molecular properties with the Flaviviridae family member hepatitis C virus (HCV), which chronically infects an estimated 200 million patients worldwide (1), BVDV is regarded as a surrogate model for HCV (2). Both HCV and BVDV encode a single large precursor polyprotein that is processed by cellular and viral proteases into mature structural and nonstructural (NS) proteins.BVDV NS3 exhibits serine protease and helicase/ATPase activities that require its cofactor NS4A (3). NS3/4A protease is essential for generating mature NS proteins that are required for viral replication. HCV NS3/4A is well characterized and has been shown to suppress type-I interferons by cleaving the cellular interferon mediators IPS-1 and TRIF (4, 5). However, neither interferon suppression nor cellular targets have been identified for the BVDV NS3/4A protease (6).Lytic and persistent BVDV infections depend on the virus biotype. Cytopathogenic (CP) BVDV causes cytopathic effects via apoptosis, whereas noncytopathogenic (NCP) BVDV does not induce obvious changes in cell morphology and viability. These features are distinguished by NS2-3 processing differences; free NS3 produced by NS2-3 cleavage is generated continuously following CP BVDV infections, whereas NS3 is detected only until ~9 h postinfection (p.i.) for NCP BVDV due to down-regulation of NS2-3 cleavage by this biotype (7). The CP biotype is characterized by dramatic up-regulation of viral RNA synthesis that could be correlated with the induction of cytopathic effect (79). Because free NS3, but not NS2-3, can form an active viral replicase complex with other NS proteins, increased viral RNA synthesis promoted through the release of free NS3 has been suggested to be a determinant of the characteristic lytic phenotype of CP BVDV infections (10). However, little is known about the regulation of cellular signaling by BVDV NS2-3, NS3, and NS3/4A, which is crucial for the control of both viral replication and biotype.Recent studies on the mechanisms of viral replication revealed that HCV RNA synthesis occurs on a lipid raft membrane structure where the active viral replicase complex is found (11, 12). The significance of the lipid raft as a scaffold for viral replication is further demonstrated by the identification of a novel HCV replication inhibitor, NA255, which prevents the biosynthesis of sphingolipids, the major components of lipid rafts (13). Administration of NA255 results in disruption of the HCV replicase complexes from the lipid rafts. This report proposes that the interaction between HCV NS5B and sphingomyelin on lipid rafts plays a crucial role for HCV RNA replication. Cellular sphingolipid metabolism is regulated by a large number of converting enzymes that maintain a homeostasis (14) but viral mechanisms that affect the sphingolipid metabolism to facilitate viral replication have yet to be identified.In a search for potential host proteins that interact with BVDV NS3, we identified sphingosine kinase 1 (SphK1) as a binding partner of NS3 using the yeast two-hybrid system. SphK1 is a lipid kinase that catalyzes the phosphorylation of sphingosine to form sphingosine 1-phosphate (S1P), a bioactive sphingolipid implicated in diverse cellular functions, including proliferation, survival, tumorigenesis, development, inflammation, and immunity (14, 15). Here, we analyze the biological significance of the SphK1 interaction with NS3, NS2-3, and NS3/4A. Using purified recombinant SphK1 and NS3, SphK activity was inhibited by NS3 in a dose-dependent manner, independently of its serine protease activity. The inhibition appears to be specific for BVDV NS3 because HCV NS3 had no effect on SphK activity. Using specific chemical inhibitors, small interfering RNA (siRNA), and a catalytically inactive mutant of SphK1, we investigated the significance of SphK inhibition in the viral replication. The present study is the first report demonstrating that SphK1 is targeted by a virus to inhibit its catalytic activity, and this mechanism may contribute to the efficient replication and pathogenesis of BVDV.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号