首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Intramembrane Proteolysis by Signal Peptide Peptidases: A Comparative Discussion of GXGD-type Aspartyl Proteases
Authors:Regina Fluhrer  Harald Steiner  and Christian Haass
Institution:Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) and Adolf Butenandt Institute, Biochemistry, Ludwig-Maximilians University, Munich, 80336 Munich, Germany
Abstract:Intramembrane-cleaving proteases are required for reverse signaling and membrane protein degradation. A major class of these proteases is represented by the GXGD-type aspartyl proteases. GXGD describes a novel signature sequence that distinguishes these proteases from conventional aspartyl proteases. Members of the family of the GXGD-type aspartyl proteases are the Alzheimer disease-related γ-secretase, the signal peptide peptidases and their homologs, and the bacterial type IV prepilin peptidases. We will describe the major biochemical and functional properties of the signal peptide peptidases and their relatives. We then compare these properties with those of γ-secretase and discuss common mechanisms but also point out a number of substantial differences.During the last years, a number of intramembrane-cleaving proteases termed I-CLiPs3 have been identified (1). I-CLiPs are generally involved in regulated intramembrane proteolysis (2). Upon shedding of a large part of the ectodomain of membrane proteins, the remaining membrane-retained stub is cleaved by specialized proteases within the hydrophobic lipid membrane. Generally, this cleavage can have two predominant biological functions: first, signaling via the liberated ICD within the substrate-expressing cell (reverse signaling) (2); and second, degradation of membrane-retained stubs, which are not required for any further biological function (3). I-CLiPs of three protease classes, metalloproteases, serine proteases, and aspartyl proteases, have been discovered so far (see accompanying minireview by Wolfe (44)).Intramembrane-cleaving aspartyl proteases are represented by the class of the GXGD-type proteases (4). These are unconventional aspartyl proteases that, like the conventional aspartyl proteases, utilize two critical aspartyl residues for peptide bond cleavage. However, in contrast to the conventional proteases, the critical aspartyl residues are located within two TMDs (Fig. 1A). Moreover, these aspartyl residues are embedded in active-site motifs that are completely different from those of conventional aspartyl proteases. The class of GXGD-type aspartyl proteases is currently represented by three different protease families, the most prominent of which is the PS family, providing the catalytically active subunit of γ-secretase (Fig. 1A) (4). PS/γ-secretase is the I-CLiP that liberates amyloid β-peptide, the major component of senile plaques in Alzheimer disease patients (5). In addition, the bacterial type IV prepilin peptidases also belong to the class of the GXGD-type proteases (6). Besides these two protease families, two additional subfamilies of related proteases that also belong to the GXGD-type aspartyl protease family have been identified. These include SPP as well as the SPP homologs, the SPP-like (SPPL) proteases (Fig. 1A) (7, 8).Open in a separate windowFIGURE 1.A, schematic representation of SPPL2a/b, a member of the SPP/SPPL family, and PS, the catalytic core of theγ-secretase. Note the opposite topology of the active sites (indicated by arrows) of the two proteases and their substrates, APP for PS and TNFα for SPPL2a/b. B, proteolytic processing of APP and TNFα. Shedding releases the extracellular part of APP (APPs) and TNFα (TNFα soluble). In the case of APP, a C-terminal fragment (APP CTF), and in case of TNFα, an N-terminal fragment (TNFα NTF) are produced. These membrane-bound fragments are substrate to intramembrane cleavage by PS or SPPL2a/b, respectively, releasing small peptides to the extracellular space (Aβ and TNFα C-domain, respectively) and to the cytosol (APP intracellular domain (AICD) and TNFα ICD), respectively). TNFα FL, full-length TNFα.We will first describe the biochemical, functional, and structural properties of SPP family members. By comparison of these properties, we will then identify common mechanisms of intramembrane proteolysis by GXGD-type proteases but also point out some fundamental differences.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号