首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Prefusion rearrangements resulting in fusion Peptide exposure in Semliki forest virus
Authors:Hammar Lena  Markarian Sevak  Haag Lars  Lankinen Hilkka  Salmi Aimo  Cheng R Holland
Institution:Department of Biosciences, Karolinska Institute, Huddinge S-141 57, Sweden. lena.hammar@biosci.se
Abstract:Semliki Forest virus (SFV), like many enveloped viruses, takes advantage of the low pH in the endosome to convert into a fusion-competent configuration and complete infection by fusion with the endosomal membrane. Unlike influenza virus, carrying an N-terminal fusion peptide, SFV represents a less-well understood fusion principle involving an endosequence fusion peptide. To explore the series of events leading to a fusogenic configuration of the SFV, we exposed the virus to successive acidification, mimicking endosomal conditions, and followed structural rearrangements at probed sensor surfaces. Thus revealed, the initial phase involves a transient appearance of a non-linear neutralizing antibody epitope in the fusion protein, E1. Concurrent with the disappearance of this epitope, a set of masked sequences in proteins E1 and E2 became exposed. When pH reached 6.0-5.9 the virion transformed into a configuration of enlarged diameter with the fusion peptide optimally exposed. Simultaneously, a partly hidden sequence close to the receptor binding site in E2 became fully uncovered. At this presumably fusogenic stage, maximally 80 fusion peptide-identifying antibody Fab fragments could be bound per virion, i.e. one ligand per three copies of the fusion protein. The phenomena observed are discussed in terms of alphavirus structure and reported functional domains.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号