首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Soil retention of 15N in a simulated N deposition study: effects of live plant and soil organic matter content
Authors:Wenwen Wang  Weixing Zhu
Institution:1. Department of Biological Sciences, State University of New York–Binghamton, Binghamton, NY, 13902, USA
2. Department of Ecology and Evolutionary Biology, University of California-Irvine, Irvine, CA, 92697, USA
Abstract:

Background and aims

The impacts of atmospheric nitrogen (N) deposition on terrestrial ecosystem processes remain controversial, mostly because of the uncertainty regarding the fates of deposited N. We conducted a 16-week simulated deposition study to experimentally trace N in a greenhouse plant-soil system.

Methods

Using a two-way factorial design, we added (15NH4)2SO4 solution twice a week to pots containing different soil organic matter (SOM) content and with or without a live plant (Salix dasyclados). The recoveries of 15N in soil, plant biomass, and leaching solution were quantified.

Results

We found most 15N was retained in soil (18.0–59.2%), with significantly more 15N recovered from high-SOM soils than from low-SOM soils. Plant presence significantly increased 15N retention in soil. Plant biomass accounted for 10–20% of the 15N input, with proportionally more 15N assimilated when plants were grown in low-SOM soils. Leaching loss of 15N was relatively low (10–17%).

Conclusion

Our study suggests that SOM content and plant presence significantly affect the fates of deposited N. Indeed, N would be preferentially retained in soils with high SOM content and live plant, while plants would assimilate more deposited N when grown in low SOM soils. Global biogeochemical models thus need to incorporate such soil-specific N retention and plant N assimilation.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号