首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Activation of several tRNAs of Escherichia coli by the phenoxyacetyl derivative of N-hydroxysuccinimide
Authors:U Nauheimer  C Hedgcoth
Institution:Department of Biochemistry, Kansas State University, Manhattan, Kansas 66508 USA
Abstract:Escherichia coli 15T? treated with chloramphenicol produces tRNAphe which is deficient in minor nucleosides. Undermodified tRNAphe chromatographs as two new peaks from a benzoylated diethylaminoethyl-cellulose column. Chloramphenicol tRNAphe was purified by phenoxyacetylation of phenylalanyl-tRNA and subsequent chromatography on benzoylated diethylaminoethyl-cellulose. Purified tRNAphe had an altered Chromatographie profile as a result of the purification procedure. Phenoxyacetylation of an unpurified tRNA preparation, which was either charged with phenylalanine or kept discharged, resulted in a permanent alteration of tRNAphe which was similar to the alteration of the purified tRNAphe. The altered tRNAs eluted with higher salt or ethanol concentrations from benzoylated diethylaminoethyl-cellulose. The alteration was also shown for tRNAphe of phenoxyacetylated tRNA from late log phase E. coli 15T?. tRNAglu and tRNALeu were not changed, but both tRNAArg and tRNAIle were altered. tRNA2Val and tRNAMet shifted in the elution profile; tRNA1Val and tRNAfMet were not affected.Comparison of the primary structures of the alterable and nonalterable tRNA's revealed that all alterable tRNA's have the undefined nucleoside X in the extra loop. Phenoxyacetylation of nucleoside X probably was the cause of the altered profiles.tRNAphe from E. coli 15T? treated with chloramphenicol was less reactive towards phenoxyacetylation than normal tRNA, possibly because of a different conformation of the modification-deficient molecule relative to the normal tRNAphe. tRNAphe from E. coli 15T?, starved for cysteine and methionine and treated with chloram-phenicol, is more deficient in minor nucleosides and showed even less reactivity.Acceptor capacities of the altered tRNA species were not changed significantly; only the acceptor capacity for tRNAIle decreased approximately 25%. The recognition site for the aminoacyl-tRNA synthetases probably is not affected.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号