首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Isolation and first EPR characterization of the [FeFe]-hydrogenases from green algae
Authors:Kamp Christina  Silakov Alexey  Winkler Martin  Reijerse Edward J  Lubitz Wolfgang  Happe Thomas
Institution:Ruhr-University Bochum, Department of Biochemistry of Plants, 44780 Bochum, Germany.
Abstract:Hydrogenase expression in Chlamydomonas reinhardtii can be artificially induced by anaerobic adaptation or is naturally established under sulphur deprivation. In comparison to anaerobic adaptation, sulphur-deprived algal cultures show considerably higher expression rates of the FeFe]-hydrogenase (HydA1) and develop a 25-fold higher in vitro hydrogenase activity. Based on this efficient induction principle we have established a novel purification protocol for the isolation of HydA1 that can also be used for other green algae. From an eight liter C. reinhardtii culture 0.52 mg HydA1 with a specific activity of 741 micromol H2 min(-1) mg(-1) was isolated. Similar amounts were also purified from Chlorococcum submarinum and Chlamydomonas moewusii. The extraordinarily large yields of protein allowed a spectroscopic characterization of the active site of these smallest FeFe]-hydrogenases for the first time. An initial analysis by EPR spectroscopy shows characteristic axial EPR signals of the CO inhibited forms that are typical for the Hox-CO state of the active site from FeFe]-hydrogenases. However, deviations in the g-tensor components have been observed that indicate distinct differences in the electronic structure between the various hydrogenases. At cryogenic temperatures, light-induced changes in the EPR spectra were observed and are interpreted as a photodissociation of the inhibiting CO ligand.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号