Erythroid spectrin in miceller detergents |
| |
Authors: | Ray Sibnath Chakrabarti Abhijit |
| |
Affiliation: | Biophysics Division, Saha Institute of Nuclear Physics, Calcutta, India. |
| |
Abstract: | We have studied the interaction of spectrin, the major protein of the erythrocyte cytoskeleton, with four commonly used detergents at concentrations above their critical miceller concentrations (cmc). Fluorescence spectroscopic studies on the emission intensity, steady state polarization, quenching with acrylamide, and time-resolved fluorescence measurements were done with spectrin in anionic detergents, e.g., SDS, deoxycholate, and nonionic detergents, e.g., Triton-X-100 and octylglucoside at concentrations double their respective cmc's. The spectrin-detergent complexes in all four systems have been characterized by far-UV CD and measurements on tryptophan fluorescence in combination with fluorescence of the extrinsic probe, pyrene. Tryptophan fluorescence studies revealed quaternary structural changes due to unzipping of the spectrin subunits in Triton-X-100 without complete dissociation. Both Triton-X-100 and SDS were found to partially denature spectrin indicated by the far-UV CD. Octylglucoside and deoxycholate are shown to have the least structural perturbations on the cytoskeletal protein, rationalizing the use of octylglucoside, in particular and also deoxycholate to be the most effective in preparing cytoskeletal fractions from erythrocytes rather than the Triton-X-100 that has long been used for preparing the Triton shells. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|