首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effect of “helper lipid” on lipoplex electrostatics
Authors:Danielle Hirsch-Lerner  Ming Zhang  Marylin E Ferrari  Yechezkel Barenholz
Institution:a Laboratory of Membrane and Liposome Research, Department of Biochemistry, Hebrew University-Hadassah Medical School, PO Box 12272, Jerusalem 91120, Israel
b Vical Inc., San Diego, CA 92121, USA
Abstract:Lipoplexes, which are complexes between cationic liposomes (L+) and nucleic acids, are commonly used as a nucleic acid delivery system in vitro and in vivo. This study aimed to better characterize cationic liposome and lipoplex electrostatics, which seems to play a major role in the formation and the performance of lipoplexes in vitro and in vivo. We characterized lipoplexes based on two commonly used monocationic lipids, DOTAP and DMRIE, and one polycationic lipid, DOSPA—each with and without helper lipid (cholesterol or DOPE). Electrical surface potential (Ψ0) and surface pH were determined using several surface pH-sensitive fluorophores attached either to a one-chain lipid (4-heptadecyl hydroxycoumarin (C17HC)) or to the primary amino group of the two-chain lipids (1,2-dioleyl-sn-glycero-3-phosphoethanolamine-N-carboxyfluorescein (CFPE) and 1,2-dioleyl-sn-glycero-3-phosphoethanolamine-N-7-hydroxycoumarin) (HC-DOPE). Zeta potentials of the DOTAP-based cationic liposomes and lipoplexes were compared with Ψ0 determined using C17HC. The location and relatively low sensitivity of fluorescein to pH changes explains why CFPE is the least efficient in quantifying the differences between the various cationic liposomes and lipoplexes used in this study. The fact that, for all cationic liposomes studied, those containing DOPE as helper lipid have the least positive Ψ0 indicates neutralization of the cationic charge by the negatively-charged phosphodiester of the DOPE. Zeta potential is much less positively charged than Ψ0 determined by C17HC. The electrostatics affects size changes that occurred to the cationic liposomes upon lipoplex formation. The largest size increase (based on static light scattering measurements) for all formulations occurred at DNA/L+ charge ratios 0.5-1. Comparing the use of the one-chain C17HC and the two-chain HC-DOPE for monitoring lipoplex electrostatics reveals that both are suitable, as long as there is no serum (or other lipidic assemblies) present in the medium; in the latter case, only the two-chain HC-DOPE gives reliable results. Increasing NaCl concentrations decrease surface potential. Neutralization by DNA is reduced in a NaCl-concentration-dependent manner.
Keywords:Chol  cholesterol  CFPE  1  2-dioleyl-sn-glycero-3-phosphoethanolamine-N-(carboxyfluorescein)  C17HC  4-heptadecyl-7-hydroxycoumarin  DC-Chol  3β-[N-(N&prime    N&prime  -dimethyl-aminoethane)-carbamoyl]-cholesterol  DMRIE  N-(1-(2  3-dimyristyloxypropyl)-N  N-dimethyl-(2-hydroxyethyl) ammonium bromide  DNA&minus  /L+  mole charge ratio of DNA negatively-charged phosphate to positively-charged lipid  DOPC  1  2-dioleoyl-sn-glycero-3-phosphocholine  DOPE  1  2-dioleoyl-sn-glycero-3-phosphoethanolamine  DOSPA  2  3-dioleyloxy-N-[2(sperminecarboxamido)-ethyl]-N  N-dimethyl-1-propanaminium trifluoro acetate  DOTAP  N-(1-(2  3-dioleoyloxy)propyl)-N  N  N-trimethylammonium chloride  HC-DOPE  1  2-dioleyl-sn-glycero-3-phosphoethanolamine-N-(7-hydroxycoumarin)  HEPES  N-(2-hydroxyethyl)-piperazine-N&prime  -(2-ethanesulfonic acid)  L+  positively charged lipid  LUV  large (&ge     100 nm) unilamellar vesicles  ODN  oligonucleotide  TMADPH  1-(4-trimethyl-ammoniumphenyl)-6-phenyl-1  3  5-hexatriene  UHV  unsized heterogeneous vesicles
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号