首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Structure and Properties of the Clathrin-Coated Vesicle and Yeast Vacuolar V-ATPases
Authors:Michael Forgac
Institution:(1) Department of Cellular and Molecular Physiology, Tufts Univer sity School of Medicine, 136 Harrison Ave., Boston, MA, 02111
Abstract:The V-ATPases are a family of ATP-dependent proton pumps responsible foracidification of intracellular compartments in eukaryotic cells. This reviewfocuses on the the V-ATPases from clathrin-coated vesicles and yeastvacuoles. The V-ATPase of clathrin-coated vesicles is a precursor to thatfound in endosomes and synaptic vesicles, which function in receptorrecycling, intracellular membrane traffic, and neurotransmitter uptake. Theyeast vacuolar ATPase functions to acidify the central vacuole and to drivevarious coupled transport processes across the vacuolar membrane. TheV-ATPases are composed of two functional domains. The V1 domain isa 570-kDa peripheral complex composed of eight subunits of molecular weight70—14 kDa (subunits A—H) that is responsible for ATP hydrolysis.The V0 domain is a 260-kDa integral complex composed of fivesubunits of molecular weight 100—17 kDa (subunits a, d, c, c8 and c9)that is responsible for proton translocation. Using chemical modification andsite-directed mutagenesis, we have begun to identify residues that play arole in ATP hydrolysis and proton transport by the V-ATPases. A centralquestion in the V-ATPase field is the mechanism by which cells regulatevacuolar acidification. Several mechanisms are described that may play a rolein controlling vacuolar acidification in vivo. One mechanisminvolves disulfide bond formation between cysteine residues located at thecatalytic nucleotide binding site on the 70-kDa A subunit, leading toreversible inhibition of V-ATPase activity. Other mechanisms includereversible assembly and dissociation of V1 and V0domains, changes in coupling efficiency of proton transport and ATPhydrolysis, and regulation of the activity of intracellular chloride channelsrequired for vacuolar acidification.
Keywords:V-ATPase  vacuolar acidification  proton transport  membrance traffic
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号