首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The metabolism of drugs and carcinogens in isolated subcellular fractions of Drosophila melanogaster. II. Enzyme induction and metabolism of benzo[a]pyrene
Authors:I Hällström  R Grafström
Institution:1. Environmental Toxicology Unit, Wallenberg Laboratory, University of Stockholm, S-10691 Stockholm Sweden;2. Department of Forensic Medicine, Karolinska Institute, S-10401 Stockholm Sweden
Abstract:The effect of various pretreatments on the activities of several drug metabolizing enzymes was investigated in microsomes and postmicrosomal supernatant fractions isolated from whole body homogenates of Drosophila melanogaster larvae of different strains. Pretreatments of larvae with either phenobarbital (PB), β-naphthoflavone (BNF) or a mixture of polychlorinated biphenyls (Aroclor 1254, PCB) for 24 h increased microsomal benzoa]pyrene (BP) monooxygenase activity 2- to 6-fold in all strains as compared to untreated larvae. A simultaneous increase in the contents of cytochrome P-450 occurred after pretreatment with PB and PCB. Comparison of the turnover rates of BP per molecule of cytochrome P-450 indicated that BP was a poor substrate for control cytochrome P-450 whereas BNF induced a most active hemoprotein for this metabolism. Marked differences in the qualitative pattern of BP metabolites were obtained between microsomes isolated from BNF-treated larvae or rat liver microsomes. 3-Hydroxy-BP (3-OH-BP) was the dominating metabolite with both preparations, while the BP dihydrodiols were formed in minor quantities in Drosophila as compared to rat liver. Metyrapone and SKF 525-A inhibited BP metabolism in microsomes isolated from untreated and BNF treated larvae of all strains. In contrast, α-naphthoflavone (ANF) stimulated the BP monooxygenase activity of microsomes isolated from untreated larvae approx. 3-fold but only slightly influenced the activity of microsomes from BNF treated larvae indicating that the latter species of cytochrome P-450 was less sensitive to ANF.In all strains, PCB and PB treatments approximately doubled microsomal epoxide hydrolase activity and increased cytosolic glutathione-S-transferase activity 25–60%, significant only in strain Berlin K after PB treatment. The activities of epoxide hydrolase and glutathione-S-transferase in control larvae were comparable in the different strains, whereas the content of cytochrome P-450 and BP monooxygenase activity was higher in the Hikone R strain. Variability in the induction response to the various pretreatment was observed among the three strains.
Keywords:ANF  α-naphthoflavone  BNF  β-naphthoflavone  BP  OH-BP  PB  phenobarbital  PCB  Aroclor 1254
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号