首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Using flight initiation distance to evaluate responses of colonial‐nesting Great Egrets to the approach of an unmanned aerial vehicle
Authors:Samantha A Collins  Gabe J Giffin  William T Strong
Abstract:Remote‐controlled, unmanned aerial vehicles (UAVs) can be used to collect information in difficult‐to‐access places while potentially minimizing human disturbance. These devices have been widely used in a variety of ecological and behavioral studies in recent years, but additional study is needed to assess the magnitude of disturbance they cause to birds. We examined the responses of Great Egrets (Ardea alba) to a UAV in a breeding colony in Louisiana in 2016 where isolated patches of common reed (Phragmites australis) were used as nest sites by multiple breeding pairs. We examined the flush responses and flight initiation distances (FIDs) of nesting adults to the direct vertical approach of a UAV. Incubating adults were more likely to flush from nests and flushed at greater distances when approached by a UAV than adults with nestlings, suggesting that adult assessment of risk was based on the greater reproductive value of nestlings. We observed fewer flush responses and calculated lower set‐back distances using a UAV to approach nesting Great Egrets (~50 m) than set‐back distances calculated using traditional methods of approach (e.g., walking or boating; 87–251 m). We found that FIDs were shorter when more adults were present in nesting patches, suggesting that the perception of predation risk may be based in part on the reactions of other birds. Our results suggest that UAVs may be a useful alternative for monitoring colonial‐nesting waterbirds. However, our analyses were based exclusively on behavioral observations. Additional studies of the physiological responses of birds to the approach of UAVs are needed to better understand the stress responses of birds to these devices.
Keywords:   Ardea alba     drone  disturbance  flight initiation distance  wading bird
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号