Isoform-specific effects of charged residues at borders of the M1-M2 loop of the Na,K-ATPase alpha subunit |
| |
Authors: | Coppi M V Compton L A Guidotti G |
| |
Affiliation: | Department of Microbiology, University of Massachusetts, Amherst 01003, USA. mcoppi@microbio.umass.edu |
| |
Abstract: | The Na,K-ATPase is specifically inhibited by the cardiac glycoside, ouabain. Via a largely undefined mechanism, the ouabain affinity of the Na,K-ATPase can be manipulated by mutating the residues at the borders of the first extracellular (M1-M2) loop of the alpha subunit [Price, E. M., Rice, D. A., and Lingrel, J. B. (1990) J. Biol. Chem. 265, 6638-6641]. To address this issue, we compared the effects of two combinations of charged residues at the M1-M2 loop border, R113, D124 and D113,R124 (numbered according to the rat alpha1 subunit), on the ouabain sensitivity of the alpha1 and alpha2 isoforms. We report that ouabain sensitivity is dependent not only upon the identity of the residues at the M1-M2 loop border but also upon the context into which they are introduced. Furthermore, at low concentrations of ATP, the identity of the residues at the M1-M2 loop border affects the regulation of ATP hydrolysis by potassium in an isoform-specific manner. Analysis of chimeric alpha subunits reveals that the effects of potassium are determined primarily by the interaction of the N-terminus and M1-M2 loop with the C-terminal third of the alpha subunit. M1-M2 loop border residues may, therefore, influence ouabain sensitivity indirectly by altering the stability or structure of the intermediate of the Na,K-ATPase catalytic cycle which is competent to bind ouabain. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|