首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Anciently duplicated <Emphasis Type="Italic">Broad Complex</Emphasis> exons have distinct temporal functions during tissue morphogenesis
Authors:Rebecca F Spokony  Linda L Restifo
Institution:(1) Graduate Interdisciplinary Program in Insect Science, University of Arizona, Tucson, AZ 85721-0108, USA;(2) ARL Division of Neurobiology, University of Arizona, Tucson, AZ 85721-0077, USA;(3) Department of Neurology, Arizona Health Sciences Center, Tucson, AZ 85724, USA;(4) Present address: Department of Human Genetics, The University of Chicago, 920 E 58th St, Chicago, IL 60637, USA
Abstract:Broad Complex (BRC) is an essential ecdysone-pathway gene required for entry into and progression through metamorphosis in Drosophila melanogaster. Mutations of three BRC complementation groups cause numerous phenotypes, including a common suite of morphogenesis defects involving central nervous system (CNS), adult salivary glands (aSG), and male genitalia. These defects are phenocopied by the juvenile hormone mimic methoprene. Four BRC isoforms are produced by alternative splicing of a protein-binding BTB/POZ-encoding exon (BTB BRC ) to one of four tandemly duplicated, DNA-binding zinc-finger-encoding exons (Z1 BRC , Z2 BRC , Z3 BRC , Z4 BRC ). Highly conserved orthologs of BTB BRC and all four Z BRC were found among published cDNA sequences or genome databases from Diptera, Lepidoptera, Hymenoptera, and Coleoptera, indicating that BRC arose and underwent internal exon duplication before the split of holometabolous orders. Tramtrack subfamily members, abrupt, tramtrack, fruitless, longitudinals lacking (lola), and CG31666 were characterized throughout Holometabola and used to root phylogenetic analyses of Z BRC exons, which revealed that the Z BRC clade includes Z abrupt . All four Z BRC domains, including Z4 BRC , which has no known essential function, are evolving in a manner consistent with selective constraint. We used transgenic rescue to explore how different BRC isoforms contribute to shared tissue-morphogenesis functions. As predicted from earlier studies, the common CNS and aSG phenotypes were rescued by BRC-Z1 in rbp mutants, BRC-Z2 in br mutants, and BRC-Z3 in 2Bc mutants. However, the isoforms are required at two different developmental stages, with BRC-Z2 and -Z3 required earlier than BRC-Z1. The sequential action of BRC isoforms indicates subfunctionalization of duplicated Z BRC exons even when they contribute to common developmental processes. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.
Keywords:Insect  Crustacean  Exon duplication  Phylogenetic tree  Molting hormone  Purifying selection
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号