首页 | 本学科首页   官方微博 | 高级检索  
   检索      


2,3,7,8-Tetrachlorodibenzo-p-dioxin alters melatonin metabolism in fish hepatocytes
Authors:Pesonen M  Korkalainen M  Laitinen J T  Andersson T B  Vakkuri O
Institution:Department of Physiology, University of Kuopio, PO Box 1627, 70211, Kuopio, Finland. Pesonen@messi.uku.fi
Abstract:Pineal hormone melatonin is an important regulator of endocrine and circadian rhythms in vertebrates. Since liver is assumed to be the major organ in the metabolism of this indole hormone, we investigated the effect of the known Ah-receptor agonist, 2,3,7, 8-tetrachlorodibenzo-p-dioxin (TCDD) on melatonin metabolism in fish hepatocytes as well as the in vitro effect of melatonin on trout hepatic microsomal cytochrome P4501A (CYP1A) catalyst. Primary cell cultures of rainbow trout hepatocytes were exposed to 3H]melatonin (1 nM to 1 microM) alone and in combination with TCDD (50 pM) at 15 degrees C for 24 or 48 h. Analysis of melatonin and its metabolites in the culture medium and hepatocytes by HPLC revealed that about 96% of the added 3H]melatonin was metabolised after 24 h in both control and TCDD treated cultures. 3H-radioactivity was found mainly in the culture medium and less than 5% of the total 3H-radioactivity retained inside hepatocytes. Of the HPLC separated metabolites, one coeluted with 6-hydroxymelatonin and one unknown metabolite eluted after 6-hydroxymelatonin. In addition, two other metabolites were more water-soluble than 6-hydroxymelatonin and were considered to be conjugated products. Treatment of the hepatocytes with TCDD increased the amount of the major oxidated product, 6-hydroxymelatonin, about 2.5-fold after 24 h and 1.2-fold after 48 h exposure, respectively when compared with the control cultures. Whereas the amount of the unknown metabolite eluting after 6-hydroxymelatonin decreased about 1.3-fold after 24 h and 1.2-fold after 48 h exposure, respectively. Melatonin alone did not affect P4501A associated EROD-activity or CYP1AmRNA levels in the primary hepatocyte cultures. TCDD-treatment increased EROD-activity 3 to 5-fold and respective CYP1AmRNA content 6 to 14-fold, when compared with the control or melatonin-treated cultures. Furthermore, melatonin competitively inhibited EROD-activity in liver microsomes with a Ki value of 62.06+/-3.78 microM. The results show that TCDD alters metabolic degradation of melatonin in hepatocytes and suggest that P4501A may be an important P450 isoenzyme involved in oxidative metabolism of melatonin in fish liver.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号