首页 | 本学科首页   官方微博 | 高级检索  
     


Thrombin-induced autoinhibitory factor, Down syndrome critical region-1, attenuates NFAT-dependent vascular cell adhesion molecule-1 expression and inflammation in the endothelium
Authors:Minami Takashi  Miura Mai  Aird William C  Kodama Tatsuhiko
Affiliation:Research Center for Advanced Science and Technology, University of Tokyo, Tokyo 153-8904, Japan. minami@med.rcast.u-tokyo.ac.jp
Abstract:
Activation and dysfunction of the endothelium underlie many vascular disorders including atherosclerosis, tumor growth, and inflammation. We recently reported that thrombin and vascular endothelial growth factor, but not tumor necrosis factor-alpha, results in dramatic up-regulation of Down syndrome critical region (DSCR)-1 gene in endothelial cells, a negative feedback regulator of calcineurin-NFAT signaling. Constitutive expression of DSCR-1 in activated endothelial cells markedly impaired NFAT nuclear localization, proliferation, tube formation, and tumor growth. The goal of the present study was to elucidate the relative roles of NFAT/DSCR-1 and NF-kappaB/I-kappaB in mediating thrombin-responsive gene expression in endothelial cells. DNA microarrays of thrombin-treated human umbilical vein endothelial cells overexpressing DSCR-1 or constitutive active IkappaBalpha revealed genes that were dependent on NFAT and/or NF-kappaB activity. Vascular cell adhesion molecule-1 was inhibited both by DSCR-1 and I-kappaB at the level of mRNA, protein, promoter activity, and function (monocyte adhesion). Using a combination of transient transfections, electrophoretic mobility shift assays, and chromatin immunoprecipitation, thrombin was shown to induce time-dependent coordinate binding of RelA and NFATc to a tandem NF-kappaB element in the upstream promoter region of vascular cell adhesion molecule-1. Together, these findings suggest that thrombin-mediated activation of endothelial cells involves an interplay between NFAT and NF-kappaB signaling pathways and their negative feedback inhibitors, DSCR-1 and I-kappaB, respectively. As natural brakes in the inflammatory process, DSCR-1 and I-kappaB may lend themselves to therapeutic manipulation in vasculopathic disease states.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号