首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Physiological assay of liposome-mediated transport of a drug across Xenopus intestine: cell-liposome interaction
Authors:T Kashiwagura  K Sakurai  N Takeguchi
Institution:Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University, Japan.
Abstract:(1) The antagonistic effect of atropine methyl bromide entrapped in liposomes on contraction of Xenopus intestine in vitro induced by acetylcholine was studied. The results provided some insight into cell-liposome interaction. (2) Acetylcholine (0.1 mM) was added to the medium in the bath (serosal solution), while liposomes containing atropine methyl bromide in their internal and external phases were added on the mucosal side of the intestine. Large multilamellar liposomes were prepared from egg lecithin (phosphatidylcholine, PC) and cholesterol in various molar ratios. Atropine methyl bromide had most effect in liposomes composed of PC and cholesterol in a ratio of 7:3, less in those with a ratio of 4:5, and none in those with a ratio of 9:1. These effects were parallel with the sizes of these liposomes, determined by quasi-elastic light-scattering; that is, the larger the liposomes, the greater was their effect. Addition (to the liposomes) of phosphatidic acid, the negative charge of which increases the distance between the lamellar layers, increased the effect, indicating that atropine methyl bromide in the space between lamellar layers was effective. Another type of liposomes in which atropine methyl bromide was present only in the external phase of liposomes was as effective as liposomes in which atropine methyl bromide was present in both the internal and external phases. (3) From these results the following new model for liposome-mediated stimulation of transport of atropine methyl bromide is proposed. Large multilamellar liposomes have structural defects in their external lamellae through which atropine methyl bromide in the mucosal solution can penetrate into the space between the external lamellar layers and move into intestinal cells through regions of fusion between the outermost layers of the liposomes and the cell membrane.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号