首页 | 本学科首页   官方微博 | 高级检索  
     


Superoxide dismutase plays an important role in the survival of Lactobacillus sake upon exposure to elevated oxygen
Authors:Amanatidou A  Bennik M H  Gorris L G  Smid E J
Affiliation:Agrotechnological Research Institute (ATO-B.V.), Bornsesteeg 59, 6708 PD, Wageningen, The Netherlands. athina.esveld@unilever.com
Abstract:
In this study, the responses of two Lactobacillus sake strains to elevated oxygen concentrations at 8 degrees C were investigated. L. sake DSM 6333 (L. sake(sens)), unlike L. sake NCFB 2813 (L. sake(ins)), showed a low growth rate in the presence of 90% O(2) and a rapid loss in viability shortly after entry into stationary phase. The steady-state cytosolic superoxide radical (O(2)(-)) concentration in L. sake(sens) was 0.134 microM and in the oxygen-insensitive mutant LSUV4 it was 0.013 microM. The nine- to ten-fold decrease in the rate of O(2)(-) elimination in L. sake(sens) indicates the significance of the O(2)(-)-scavenging system in protecting against elevated O(2). The superoxide dismutase (SOD) activity was 10- to 20-fold higher in L. sake(ins) than in L. sake(sens), depending on the growth phase. An oxygen-insensitive mutant of L. sake(sens), designated as strain LSUV4, had a ten-fold higher SOD activity than the wild-type strain, which likely restored its oxygen tolerance. Damage to proteins in L. sake(sens) was evidenced by the increased protein carbonyl content and reduced activities of the [Fe-S]-cluster-containing enzymes fumarase and fumarate reductase. This study forms a physiological basis for understanding the significance of elevated oxygen stress as an additional method for inhibition of microbial growth in relation to food preservation.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号