首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Replication fork reversal in DNA polymerase III mutants of Escherichia coli: a role for the beta clamp
Authors:Grompone Gianfranco  Seigneur Marie  Ehrlich S Dusko  Michel Bénédicte
Institution:Laboratoire de Génétique Microbienne, Institut National de la Recherche Agronomique, 78352 Jouy en Josas, France.
Abstract:Certain replication mutations lead in Escherichia coli to a specific reaction named replication fork reversal: at blocked forks, annealing of the nascent strands and pairing of the template strands form a four-way junction. RuvABC-catalysed resolution of this Holliday junction causes chromosome double-strand breaks (DSBs) in a recBC context and therefore creates a requirement for the recombination proteins RecBC for viability. In the present work, two mutants were tested for replication fork reversal: a dnaEts mutant and a dnaNts mutant, affected in the alpha (polymerase) and beta (processivity clamp) subunits of DNA polymerase III holoenzyme respectively. In the dnaEts recB strain, RuvABC-dependent DSBs caused by the dnaEts mutation occurred at 37 degrees C or 42 degrees C, indicating the occurrence of replication fork reversal upon partial or complete inactivation of the DNA polymerase alpha subunit. DSB formation was independent of RecA, RecQ and the helicase function of PriA. In the dnaNts recB mutant, RuvABC-dependent DSB caused by the dnaNts mutation occurred only at semi-permissive temperature, 37 degrees C, indicating the occurrence of replication fork reversal in conditions in which the remaining activity of the beta clamp is sufficient for viability. In contrast, the dnaNts mutation did not cause chromosome breakage at 42 degrees C, a temperature at which DnaN is totally inactive and the dnaNts mutant is inviable. We propose that a residual activity of the DNA polymerase III beta clamp is required for replication fork reversal in the dnaNts mutant.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号