MUC-1 aptamer targeted superparamagnetic iron oxide nanoparticles for magnetic resonance imaging of pancreatic cancer in vivo and in vitro experiment |
| |
Authors: | Qi Zou MD Chong-Jie Zhang MD Yu-Zhong Yan MD Zhi-Jun Min MD Chun-Sheng Li MD |
| |
Affiliation: | 1. Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Pudong Medical Center, Fudan University, Shanghai, China;2. Clinical Laboratory, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China |
| |
Abstract: | This study aims to explore the ability of magnetic resonance imaging (MRI) in mucin 1 (MUC1) modified superparamagnetic iron oxide nanoparticle (SPION) targeting human pancreatic cancer (PC). The MUC1 target-directed probe was prepared through MUC1 conjugated to SPION using the chemical method to assess its physiochemical characteristics, including hydration diameter, surface charge, and magnetic resonance signal. The cytotoxicity of MUC1-USPION was verified by MTS assay. BxPC-3 was cultured with MUC1-USPION and SPION in different concentrations. The combined condition of the targeted probes and cells were observed through Prussian blue staining. The nude mice model of pancreatic cancer was established to investigate the application of the probe. MRI was performed to determine the intensity of the signal of the transplanted tumor, while immunohistochemistry and Western blot analysis were performed to detect the expression of MUC1 after taking the transplanted tumor specimen. The particle size of the prepared molecular probe was 63.5 ± 3.2 nm, and the surface charge was 10.2 mV. Furthermore, the probe solution could significantly reduce the MRI at T2, and the magnetic resonance transverse relaxation rate (ΔR2) has a linear relationship with the concentration of iron in the solution. The cell viability of MUC1-USPION in different concentrations revealed no statistical difference, according to the MTS assay. In vitro, the MRI demonstrated decreased T2WI signal intensity in both groups, especially the targeting group. In vivo, MUC1 could selectively accumulate in the nude mice model, and significantly reduce the T2 signal strength. In subsequent experiments, the expression of MUC1 was high in pancreatic cancer tissues, but low in normal pancreatic tissues, as determined by immunohistochemistry and Western blot analysis. The prepared samples can be combined with pancreatic cancer tissue specificity by in vivo imaging, providing reliable early in vivo imaging data for disease diagnosis. |
| |
Keywords: | magnetic resonance imaging mucin 1 pancreatic cancer superparamagnetic iron oxide nanoparticle |
|
|