首页 | 本学科首页   官方微博 | 高级检索  
     


Detection of conformational changes in immunoglobulin G using isothermal titration calorimetry with low-molecular-weight probes
Authors:Rispens Theo  Lakemond Catriona M M  Derksen Ninotska I L  Aalberse Rob C
Affiliation:aSanquin Research, 1066 CX Amsterdam, The Netherlands;bLandsteiner Laboratory, Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;cProduct Design and Quality Management Group, Wageningen University and Research Centre, 6703 HD Wageningen, The Netherlands
Abstract:
Proteins for therapeutic use may contain small amounts of partially misfolded monomeric precursors to postproduction aggregation. To detect these misfolded proteins in the presence of an excess of properly folded protein, fluorescent probes such as 8-anilino-1-naphthalene sulfonate (ANS) are commonly used. We investigated the possibility of using isothermal titration calorimetry (ITC) to improve the detection of this type of conformational change using hydrophobic probes. As a case study, conformational changes in human polyclonal immunoglobulin G (IgG) were monitored by measuring the enthalpies of binding of ANS using ITC. Results were compared with those using fluorescence spectroscopy. IgG heated at 63 °C was used as a model system for “damaged” IgG. Heat-treated IgG can be detected already at levels below 5% with both ITC and fluorescence. However, ITC allows a much wider molar probe-to-protein ratio to be sampled. In particular, using reverse titration experiments (allowing high probe-to-protein ratios not available to fluorescence spectroscopy), an increase in the number of binding sites with a Kd > 10 mM was observed for heat-treated IgG, reflecting subtle changes in structure. Both ITC and fluorescence spectroscopy showed low background signals for native IgG. The nature of the background signals was not clear from the fluorescence measurements. However, further analysis of the ITC background signals shows that a fraction (8%) binds ANS with a dissociation constant of approximately 0.2 mM. Measurements were also carried out at pH 4.5. Precipitation of IgG was induced by ANS at concentrations above 0.5 mM, interfering with the ITC measurements. Instead, with the nonfluorescent probes 4-amino-1-naphthalene sulfonate and 1-naphthalene sulfonate, no precipitation is observed. These probes yield differences in the enthalpies of binding to heated and nonheated IgG similar to ANS. The data illustrate that ITC with low-molecular-weight probes is a versatile tool to monitor conformational changes in proteins with a wider application potential than fluorescence measurements.
Keywords:Isothermal titration calorimetry   Immunoglobulin   Fluorescence   8-Anilino-1-naphthalene sulfonate   Heat-induced denaturation
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号