首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Glutamine kinetics and protein turnover in end-stage renal disease
Authors:Raj Dominic S C  Welbourne Tomas  Dominic Elizabeth A  Waters Debra  Wolfe Robert  Ferrando Arny
Institution:Division of Nephrology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-5271, USA. draj@salud.unm.edu
Abstract:Alanine and glutamine constitute the two most important nitrogen carriers released from the muscle. We studied the intracellular amino acid transport kinetics and protein turnover in nine end-stage renal disease (ESRD) patients and eight controls by use of stable isotopes of phenylalanine, alanine, and glutamine. The amino acid transport kinetics and protein turnover were calculated with a three-pool model from the amino acid concentrations and enrichment in the artery, vein, and muscle compartments. Muscle protein breakdown was more than synthesis (nmol.min(-1).100 ml leg(-1)) during hemodialysis (HD) (169.8 +/- 20.0 vs. 125.9 +/- 21.8, P < 0.05) and in controls (126.9 +/- 6.9 vs. 98.4 +/- 7.5, P < 0.05), but synthesis and catabolism were comparable pre-HD (100.7 +/- 15.7 vs. 103.4 +/- 14.8). Whole body protein catabolism decreased by 15% during HD. The intracellular appearance of alanine (399.0 +/- 47.1 vs. 243.0 +/- 34.689) and glutamine (369.7 +/- 40.6 vs. 235.6 +/- 27.5) from muscle protein breakdown increased during dialysis (nmol.min(-1).100 ml leg(-1), P < 0.01). However, the de novo synthesis of alanine (3,468.9 +/- 572.2 vs. 3,140.5 +/- 467.7) and glutamine (1,751.4 +/- 82.6 vs. 1,782.2 +/- 86.4) did not change significantly intradialysis (nmol.min(-1).100 ml leg(-1)). Branched-chain amino acid catabolism (191.8 +/- 63.4 vs. -59.1 +/- 42.9) and nonprotein glutamate disposal (347.0 +/- 46.3 vs. 222.3 +/- 43.6) increased intradialysis compared with pre-HD (nmol.min(-1).100 ml leg(-1), P < 0.01). The mRNA levels of glutamine synthase (1.45 +/- 0.14 vs. 0.33 +/- 0.08, P < 0.001) and branched-chain keto acid dehydrogenase-E2 (3.86 +/- 0.48 vs. 2.14 +/- 0.27, P < 0.05) in the muscle increased during HD. Thus intracellular concentrations of alanine and glutamine are maintained during HD by augmented release of the amino acids from muscle protein catabolism. Although muscle protein breakdown increased intradialysis, the whole body protein catabolism decreased, suggesting central utilization of amino acids released from skeletal muscle.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号