首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Folding thermodynamics of the hybrid‐1 type intramolecular human telomeric G‐quadruplex
Authors:Mozhgan Nazari  Heiko Heerklotz  Rashid M Abu‐Ghazalah  David N Dubins  Tigran V Chalikian
Institution:Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
Abstract:Guanine‐rich DNA sequences that may form G‐quadruplexes are located in strategic DNA loci with the ability to regulate biological events. G‐quadruplexes have been under intensive scrutiny owing to their potential to serve as novel drug targets in emerging anticancer strategies. Thermodynamic characterization of G‐quadruplexes is an important and necessary step in developing predictive algorithms for evaluating the conformational preferences of G‐rich sequences in the presence or the absence of their complementary C‐rich strands. We use a combination of spectroscopic, calorimetric, and volumetric techniques to characterize the folding/unfolding transitions of the 26‐meric human telomeric sequence dA3G3(T2AG3)3A2]. In the presence of K+ ions, the latter adopts the hybrid‐1 G‐quadruplex conformation, a tightly packed structure with an unusually small number of solvent‐exposed atomic groups. The K+‐induced folding of the G‐quadruplex at room temperature is a slow process that involves significant accumulation of an intermediate at the early stages of the transition. The G‐quadruplex state of the oligomeric sequence is characterized by a larger volume and compressibility and a smaller expansibility than the coil state. These results are in qualitative agreement with each other all suggesting significant dehydration to accompany the G‐quadruplex formation. Based on our volume data, 432 ± 19 water molecules become released to the bulk upon the G‐quadruplex formation. This large number is consistent with a picture in which DNA dehydration is not limited to water molecules in direct contact with the regions that become buried but involves a general decrease in solute–solvent interactions all over the surface of the folded structure. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 216–227, 2014.
Keywords:G‐quadruplexes  conformational transitions  volume  compressibility  expansibility
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号