Physiological and developmental implications of motor unit anatomy |
| |
Authors: | M Ounjian R R Roy E Eldred A Garfinkel J R Payne A Armstrong A W Toga V R Edgerton |
| |
Affiliation: | Brain Research Institute, University of California, Los Angeles 90024. |
| |
Abstract: | There is increasing evidence that the architectural design and arrangement of the fibers within a motor unit have important physiological and developmental ramifications. Limited data, however, are available to directly address this issue. In the present study the physiological properties of one motor unit in each of seven cat tibialis anterior (TA) muscles were determined. Each of these units then was repetitively stimulated to deplete the glycogen in all muscle fibers within the unit. Subsequently, the length, type of ending, and spatial distribution of fibers sampled from these physiologically and histochemically typed motor units were determined. Four fast fatigable (FF), one fast, fatigue resistant (FR), and two slow (S) motor units (MU) were studied. The samples consisted of all those glycogen-depleted fibers (9-27) contained within a single fascicle or a circumscribed area of each of the motor unit territories. The mean fiber lengths for the two slow motor units were 35.9 and 45.5 mm. The mean fiber lengths for the fast motor unit samples ranged from 8.8 to 48.5 mm. Some fibers of both the fast and slow units reached lengths of 58 mm. Most of the fibers in the slow units extended the entire distance between the proximal and distal musculotendinous planes, had relatively constant cross-sectional areas, and terminated at the tendon as blunt endings. In contrast, the majority of the fibers in the fast units terminated intrafascicularly at one end, and the cross-sectional area decreased progressively along their lengths, that is, showed a tapering pattern for a significant proportion of their lengths. Therefore, the force generated by units that end midfascicularly would appear to be transmitted to connective tissue elements and/or adjacent fibers. All fibers of a fast unit within a fascicle were located at approximately the same proximo-distal location. Thus, developmentally the selection of muscle fibers by a motoneuron would seem to be influenced by their spatial distribution. The architectural complexities of motor units also have clear implications for the mechanical interactions of active and inactive motor units. For example, the tension capabilities of a motor unit may be influenced not only by the spatial arrangement of its own fibers, but also by the level of activation of neighboring motor units. |
| |
Keywords: | |
|
|