首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Magnetic circular dichroism studies of myoglobin, hemoglobin and peroxidase at room and low temperatures. Ferrous high spin derivatives.
Authors:Y A Sharonov  A P Mineyev  M A Livshitz  N A Sharonova  V B Zhurkin  Y P Lysov
Abstract:The magnetic circular dichroism spectra (MCD) recorded for the visible and near-UV regions of high-spin ferrous derivatives of myoglobin, hemoglobin, hemoglobin dimers and isolated chains as well as of horseradish peroxidase at pH 6.8 and 11.4 have been compared at the room and liquid nitrogen temperatures. The MCD of the Q00- and QV-bands have been shown to be sensitive to structural differences in the heme environment of these hemoproteins. The room temperature visible MCD of native hemoglobin differs from that of myoglobin, hemoglobin dimers and isolated chains as well as from that of model pentacoordinated complex. The MCD of hemoglobin is characterized by the greater value of the MCD intensity ratio of derivative shape A-term in the Q00-band to the A-term in the QV-band. The evidneces are presented for the existence of two pH-dependent forms of ferroperoxidase, the neutral peroxidase shows the "hemoglobin-like" MCD, while the alkaline ferroperoxidase is characterized by the "myoglobin-like" MCD spectrum in the visible region. The differences in the MCD of deoxyhemoglobin and neutral ferroperoxidase as compared with other high-spin ferrous hemoproteins are considered to result from the constraints on heme group imposed by quaternary and/or tertiary protein structure. The differences between hemoporteins which are seen at the room temperature become more pronounced at liquid nitrogen temperature. Except the peak at approximately 580 nm in the MCD of deoxymyoglobin and reduced peroxidase at pH 11.4 the visible MCD does not show appreciable temperature dependent C-terms. The nature of the temperature dependent effect at approximately 580 nm is not clear. The Soret MCD of all hemoproteins studied are similar and are predominantly composed of the derivative-shaped C-terms as revealed by the increase of the MCD peaks approximately in accordance with Boltzmann distribution. The interpretation of temperature-dependent MCD observed for the Soret band has been made in terms of porphyrin to Fe-iron charge-transfer electronic transition which may be assigned as b( pi) leads to 3d. This charge-transfer band is strongly overlapped with usual B(pi --pi*) band resulting in diffuse Soret band. Adopting that only two normal vibrations are sinphase with charge-transfer transition the extracted C-terms of the Soret MCD have been fitted by theoretical dispersion curves.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号