首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Magnesium regulates ADP dissociation from myosin V
Authors:Rosenfeld Steven S  Houdusse Anne  Sweeney H Lee
Institution:Department of Neurology, University of Alabama at Birmingham, FOT 1020, 1530 3rd Ave. South, Birmingham, AL 35294, USA. stevensr@uab.edu
Abstract:Processivity in myosin V is mediated through the mechanical strain that results when both heads bind strongly to an actin filament, and this strain regulates the timing of ADP release. However, what is not known is which steps that lead to ADP release are affected by this mechanical strain. Answering this question will require determining which of the several potential pathways myosin V takes in the process of ADP release and how actin influences the kinetics of these pathways. We have addressed this issue by examining how magnesium regulates the kinetics of ADP release from myosin V and actomyosin V. Our data support a model in which actin accelerates the release of ADP from myosin V by reducing the magnesium affinity of a myosin V-MgADP intermediate. This is likely a consequence of the structural changes that actin induces in myosin to release phosphate. This effect on magnesium affinity provides a plausible explanation for how mechanical strain can alter this actin-induced acceleration. For actomyosin V, magnesium release follows phosphate release and precedes ADP release. Increasing magnesium concentration to within the physiological range would thus slow both the ATPase activity and the velocity of movement of this motor.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号