首页 | 本学科首页   官方微博 | 高级检索  
     


The parallel superpleated beta-structure as a model for amyloid fibrils of human amylin
Authors:Kajava Andrey V  Aebi Ueli  Steven Alasdair C
Affiliation:Centre de Recherches de Biochimie Macromoléculaire, CNRS FRE-2593, 1919 Route de Mende, 34293 Montpellier Cedex 5, France. andrey.kajava@crbm.cnrs.fr
Abstract:Human amylin is a 37 amino acid residue peptide hormone whose fibrillogenesis has been correlated with type 2 diabetes. These fibrils are rope-like bundles of several 5nm diameter protofilaments. Here, we propose, as a model for the protofilament, a variant of the parallel superpleated beta-structure previously derived for amyloid filaments of the yeast prion Ure2p. In the amylin model, individual polypeptides from residues 9 to 37 have a planar S-shaped fold with three beta-strands. These serpentines are stacked in register, with a 0.47 nm axial rise and a small rotational twist per step, generating an array of three parallel beta-sheets in cross-beta conformation. The interior, the two bays sandwiched between adjacent sheets, are occupied by non-polar and by polar/uncharged residues that are predicted to form H-bonded ladders, similar to those found in beta-helical proteins. The N-terminal peptide containing a disulfide bond occupies an extraneous peripheral position in the protofilament. The left-handed twist of the beta-sheets is shown to underlie left-handed coiling of amylin protofilaments in fibrils. The model is consistent with current biophysical, biochemical and genetic data and, in particular, affords a plausible explanation for why rodent amylin does not form fibrils.
Keywords:atomic structure   diabetes mellitus   islet amyloid   fibrils   molecular model
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号