首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Microtubule arrays in regeneratingMougeotia protoplasts may be oriented by electric fields
Authors:R G White  G J Hyde  R L Overall
Institution:(1) School of Biological Sciences, University of Sydney, Macleay Building A12, 2006, N.S.W., Australia;(2) Plant Cell Biology Group, Research School of Biological Sciences, Australian National University, Canberra, ACT
Abstract:Summary Initially non-polar protoplasts of the green algaMougeotia will regenerate to re-establish their original cylindrical cell shape. The orientation of the growth axis of regenerating protoplasts held in agarose was independent of both the direction of incident white light and gravity. Protoplasts elongated parallel to applied DC electric fields of approx. 0.2 Vcm–1 (1 mV/protoplast) and greater, with an increasing percentage oriented with increasing field strength. At the maximum field strength used (10 mV/cell), 53% of protoplasts were oriented within +- 10° of the 0/180° axis of the field. In untreated controls, the orientation of elongation was random. Protoplast survival was unaffected by field treatment. Some protoplasts (up to 37% in 10 mV/cell fields) formed outgrowths towards the cathode and occasionally towards the anode. Regenerating protoplasts in fields displayed the normal sequence of microtubule reorganization. This means that the positioning of the ordered symmetrical array of microtubules centred on two foci that appears within 3 to 4 h, and the subsequent organization of microtubules by 8 to 12 h into a band that intersects both foci and which is transverse to the axis of elongation (Galway and Hardham 1986), may be controlled by externally applied electric fields. In the region of this microtubule band, the applied field causes the plasma membrane to be stretched parallel to the field (Bryant and Wolfe 1987). We suggest that microtubules may become oriented perpendicular to the direction of field-induced membrane stretching, and that membrane stretching may be one of the orienting mechanisms for membrane-linked microtubules in elongating plant cells.Abbreviations PBS phosphate buffered saline - PMM protoplast maintenance medium - DMM dilute maintenance medium - MES 2(N-morpholino)ethanesulfonic acid - TRIS tris(hydroxymethyl)aminomethane - ANOVA analysis of variance
Keywords:Microtubules  Protoplasts  Mougeotia  Polarity  Electric fields
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号