首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Assessment of Biological Activities and Genomic Changes on Microorganisms,Wheat, and Wilding Arise from Poly(pyrazole)
Authors:Assoc?Prof Sedat Bozari  Assoc?Prof Adnan Cetin  M?Sc Havva Kurt
Institution:1. Mu? Alparslan University, Faculty of Science, Department of Molecular Biology, 49250 Mu?, Turkiye;2. Yüzüncü Y?l University, Faculty of Education, Department of Chemistry, 65000 Van, Turkiye
Abstract:The rapidly growing human population has led to duplicate food production and also reduced product loss. Although the negative effects of synthetic chemicals were recorded, they are still used as agrochemical. The production of non-toxic synthetics makes their use particularly safe. The goal of our research is to evaluate antimicrobial activity of previously synthesized Poly(p-phenylene-1-(2,5-dimethylphenyl)-5-phenyl-1H-pyrazole-3,4-dicarboxy amide) (poly(PDPPD)) against selected Gram-negative, Gram-positive bacteria, and fungus. In addition, the possible genotoxic effects of the poly(PDPPD) were searched on Triticum vulgare and Amaranthus retroflexus seedlings using Random Amplified Polymorphic DNA (RAPD) marker. The binding affinity and binding energies of the synthesized chemical to B-DNA were simulated with AutoDock Vina. It was observed that the poly(PDPPD) affected most of the organisms in a dose-dependent manner. Pseudomonas aeruginosa was the most affected species in tested bacteria at 500 ppm with 21.5 mm diameters. Similarly, a prominent activity was observed for tested fungi. The poly(PDPPD) decreased root and stem length of the Triticum vulgare and Amaranthus retroflexus seedlings and also reduced the genomic template stability (GTS) value of Triticum vulgare more than Amaranthus retroflexus. The binding energy of poly(PDPPD) was found in range of ?9.1 and ?8.3 kcal/mol for nine residues of B-DNA.
Keywords:antimicrobial  pyrazole  herbicide  genotoxicity  docking  DNA grooves
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号