首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Assembly-history dynamics of a pitcher-plant protozoan community in experimental microcosms
Authors:Kohmei Kadowaki  Brian D Inouye  Thomas E Miller
Institution:Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America.
Abstract:

Background

History drives community assembly through differences both in density (density effects) and in the sequence in which species arrive (sequence effects). Density effects arise from predictable population dynamics, which are free of history, but sequence effects are due to a density-free mechanism, arising solely from the order and timing of immigration events. Few studies have determined how components of immigration history (timing, number of individuals, frequency) alter local dynamics to determine community assembly, beyond addressing when immigration history produces historically contingent assembly.

Methods/Findings

We varied density and sequence effects independently in a two-way factorial design to follow community assembly in a three-species aquatic protozoan community. A superior competitor, Colpoda steinii, mediated alternative community states; early arrival or high introduction density allowed this species to outcompete or suppress the other competitors (Poterioochromonas malhamensis and Eimeriidae gen. sp.). Multivariate analysis showed that density effects caused greater variation in community states, whereas sequence effects altered the mean community composition.

Conclusions

A significant interaction between density and sequence effects suggests that we should refine our understanding of priority effects. These results highlight a practical need to understand not only the “ingredients” (species) in ecological communities but their “recipes” as well.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号