首页 | 本学科首页   官方微博 | 高级检索  
     


The proteome of cytosolic lipid droplets isolated from differentiated Caco-2/TC7 enterocytes reveals cell-specific characteristics
Authors:Bouchoux Julien  Beilstein Frauke  Pauquai Thomas  Guerrera I Chiara  Chateau Danielle  Ly Nathalie  Alqub Malik  Klein Christophe  Chambaz Jean  Rousset Monique  Lacorte Jean-Marc  Morel Etienne  Demignot Sylvie
Affiliation:Université Pierre et Marie Curie-Paris 6, UMR S 872, Les Cordeliers, Paris 75006, France.
Abstract:
Background information. Intestinal absorption of alimentary lipids is a complex process ensured by enterocytes and leading to TRL [TAG (triacylglycerol)‐rich lipoprotein] assembly and secretion. The accumulation of circulating intestine‐derived TRL is associated with atherosclerosis, stressing the importance of the control of postprandial hypertriglyceridaemia. During the postprandial period, TAGs are also transiently stored as CLDs (cytosolic lipid droplets) in enterocytes. As a first step for determining whether CLDs could play a role in the control of enterocyte TRL secretion, we analysed the protein endowment of CLDs isolated by sucrose‐gradient centrifugation from differentiated Caco‐2/TC7 enterocytes, the only human model able to secrete TRL in culture and to store transiently TAGs as CLDs when supplied with lipids. Cells were analysed after a 24 h incubation with lipid micelles and thus in a state of CLD‐associated TAG mobilization. Results. Among the 105 proteins identified in the CLD fraction by LC‐MS/MS (liquid chromatography coupled with tandem MS), 27 were directly involved in lipid metabolism pathways potentially relevant to enterocyte‐specific functions. The transient feature of CLDs was consistent with the presence of proteins necessary for fatty acid activation (acyl‐CoA synthetases) and for TAG hydrolysis. In differentiated Caco‐2/TC7 enterocytes, we identified for the first time LPCAT2 (lysophosphatidylcholine acyltransferase 2), involved in PC (phosphatidylcholine) synthesis, and 3BHS1 (3‐β‐hydroxysteroid dehydrogenase 1), involved in steroid metabolism, and confirmed their partial CLD localization by immunofluorescence. In enterocytes, LPCAT2 may provide an economical source of PC, necessary for membrane synthesis and lipoprotein assembly, from the lysoPC present in the intestinal lumen. We also identified proteins involved in lipoprotein metabolism, such as ApoA‐IV (apolipoprotein A‐IV), which is specifically expressed by enterocytes and has been proposed to play many functions in vivo, including the formation of lipoproteins and the control of their size. The association of ApoA‐IV with CLD was confirmed by confocal and immunoelectron microscopy and validated in vivo in the jejunum of mice fed with a high‐fat diet. Conclusions. We report for the first time the protein endowment of Caco‐2/TC7 enterocyte CLDs. Our results suggest that their formation and mobilization may participate in the control of enterocyte TRL secretion in a cell‐specific manner.
Keywords:3‐β‐hydroxysteroid dehydrogenase  apolipoprotein A‐IV  Caco‐2/TC7 cell  cytosolic lipid droplet  enterocyte  lysophosphatidylcholine acyltransferase 2 (LPCAT2)  proteome
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号