首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Coupling between cyclooxygenase, terminal prostanoid synthase, and phospholipase A2.
Authors:N Ueno  M Murakami  T Tanioka  K Fujimori  T Tanabe  Y Urade  I Kudo
Institution:Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Osaka Bioscience Institute CREST, Japan.
Abstract:We have recently shown that two distinct prostaglandin (PG) E(2) synthases show preferential functional coupling with upstream cyclooxygenase (COX)-1 and COX-2 in PGE(2) biosynthesis. To investigate whether other lineage-specific PG synthases also show preferential coupling with either COX isozyme, we introduced these enzymes alone or in combination into 293 cells to reconstitute their functional interrelationship. As did the membrane-bound PGE(2) synthase, the perinuclear enzymes thromboxane synthase and PGI(2) synthase generated their respective products via COX-2 in preference to COX-1 in both the -induced immediate and interleukin-1-induced delayed responses. Hematopoietic PGD(2) synthase preferentially used COX-1 and COX-2 in the -induced immediate and interleukin-1-induced delayed PGD(2)-biosynthetic responses, respectively. This enzyme underwent stimulus-dependent translocation from the cytosol to perinuclear compartments, where COX-1 or COX-2 exists. COX selectivity of these lineage-specific PG synthases was also significantly affected by the concentrations of arachidonate, which was added exogenously to the cells or supplied endogenously by the action of cytosolic or secretory phospholipase A(2). Collectively, the efficiency of coupling between COXs and specific PG synthases may be crucially influenced by their spatial and temporal compartmentalization and by the amount of arachidonate supplied by PLA(2)s at a moment when PG production takes place.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号