Abstract: | Genetic diversity among 13 different cultivars of date palm (Phoenix dactylifera L.) of Saudi Arabia was studied using random amplified polymorphic DNA (RAPD) markers. The screening of 140 RAPD primers allowed selection of 37 primers which revealed polymorphism, and the results were reproducible. All 13 genotypes were distinguishable by their unique banding patterns produced by 37 selected primers. Cluster analysis by the unweighted paired group method of arithmetic mean (UPGMA) showed two main clusters. Cluster A consisted of five cultivars (Shehel, Om-Kobar, Ajwa, Om-Hammam and Bareem) with 0.59–0.89 Nei and Li's coefficient in the similarity matrix. Cluster B consisted of seven cultivars (Rabeeha, Shishi, Nabtet Saif, Sugai, Sukkary Asfar, Sukkary Hamra and Nabtet Sultan) with a 0.66–0.85 Nei and Li's similarity range. Om-Hammam and Bareem were the two most closely related cultivars among the 13 cultivars with the highest value in the similarity matrix for Nei and Li's coefficient (0.89). Ajwa was closely related with Om-Hammam and Bareem with the second highest value in the similarity matrix (0.86). Sukkary Hamra and Nabtet Sultan were also closely related, with the third highest value in the similarity matrix (0.85). The cultivar Barny did not belong to any of the cluster groups. It was 34% genetically similar to the rest of the 12 cultivars. The average similarity among the 13 cultivars was more than 50%. As expected, most of the cultivars have a narrow genetic base. The results of the analysis can be used for the selection of possible parents to generate a mapping population. The variation detected among the closely related genotypes indicates the efficiency of RAPD markers over the morphological and isozyme markers for the identification and construction of genetic linkage maps.Communicated by H.F. Linskens |