首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Characterization of a nutrient feed precipitate from an E. coli fermentation process
Authors:Speciner Lauren  Mallon Erin  Leung Susan  Laird Michael W  Esue Osigwe
Institution:Process Development Engineering, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
Abstract:Metalloproteins require soluble metal ions such as zinc to properly fold into their native and active state to maintain stability and biological activity. When protein products are produced during microbial fermentations, metals are made available to the metalloproteins via nutrient supplements. During the production at the manufacturing-scale of a recombinant product that required zinc as a cofactor, an insoluble precipitate formed in the preparation tank after steam sterilization of the nutrient feed containing methionine, glycerophosphate, and zinc sulfate (MGZ). The precipitated nutrient feed was believed to be the cause for not enough zinc delivered to the production fermentor, leading to poor product assembly and stabilization. This article explores several analytical techniques such as capillary zone electrophoresis, inductively coupled plasma and phosphate molybdate assays to identify and quantify the composition of the precipitate. Our results show that the glycerophosphate component of the combined MGZ nutrient feed contains inorganic phosphate, which precipitates zinc from the feed media.
Keywords:capillary electrophoresis  metalloenzymes  nutrient feed
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号