Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives |
| |
Authors: | Akinori Matsushika Hiroyuki Inoue Tsutomu Kodaki Shigeki Sawayama |
| |
Affiliation: | (1) Biomass Technology Research Center (BTRC), National Institute of Advanced Industrial Science and Technology (AIST), 2-2-2 Hirosuehiro, Kure Hiroshima, 737-0197, Japan;(2) Institute of Advanced Energy, Kyoto University, Gokasho, Uji Kyoto, 611-0011, Japan |
| |
Abstract: | Bioethanol production from xylose is important for utilization of lignocellulosic biomass as raw materials. The research on yeast conversion of xylose to ethanol has been intensively studied especially for genetically engineered Saccharomyces cerevisiae during the last 20 years. S. cerevisiae, which is a very safe microorganism that plays a traditional and major role in industrial bioethanol production, has several advantages due to its high ethanol productivity, as well as its high ethanol and inhibitor tolerance. However, this yeast cannot ferment xylose, which is the dominant pentose sugar in hydrolysates of lignocellulosic biomass. A number of different strategies have been applied to engineer yeasts capable of efficiently producing ethanol from xylose, including the introduction of initial xylose metabolism and xylose transport, changing the intracellular redox balance, and overexpression of xylulokinase and pentose phosphate pathways. In this review, recent progress with regard to these studies is discussed, focusing particularly on xylose-fermenting strains of S. cerevisiae. Recent studies using several promising approaches such as host strain selection and adaptation to obtain further improved xylose-utilizing S. cerevisiae are also addressed. |
| |
Keywords: | Ethanol production Xylose fermentation Saccharomyces cerevisiae Lignocellulosic biomass Metabolic engineering |
本文献已被 SpringerLink 等数据库收录! |
|