首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Family portraits: the enzymes behind benzylisoquinoline alkaloid diversity
Authors:Mehran Dastmalchi  Myung Ryeol Park  Jeremy S Morris  Peter Facchini
Institution:1.Department of Biological Sciences,University of Calgary,Calgary,Canada
Abstract:Benzylisoquinoline alkaloids (BIAs) are a group of specialized metabolites found predominantly in the plant order Ranunculales. Approximately 2500 naturally occurring BIAs have been identified, many of which possess a variety of potent biological and pharmacological properties. The initial BIA skeleton is formed via condensation by a unique enzyme, norcoclaurine synthase, of the l-tyrosine derivatives dopamine and 4-hydroxyphenylacetaldehyde, yielding (S)-norcoclaurine as a central intermediate. The vast diversity of BIA structures is subsequently derived from (1) transformation of the basic BIA backbone by oxidative enzymes, particularly cytochromes P450 and FAD-linked oxidases, and (2) further structural and functional group modification by tailoring enzymes, which also include various reductases, dioxygenases, acetyltransferases, and carboxylesterases. Most of the biosynthetic enzymes responsible for the biosynthesis of major BIAs (i.e. morphine, noscapine, papaverine, and sanguinarine) in opium poppy (Papaver somniferum), and other compounds (e.g. berberine) in related plants, have been isolated and partially characterized. Diversity in BIA metabolism is driven by the modular and repetitive recruitment, and subsequent neo-functionalization, of a limited number of ancestral enzymes. In this review, BIA biosynthetic enzymes are discussed in the context of their respective families, facilitating exploration of common phylogeny and biochemical mechanisms.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号