首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A substance in L-929 cell extracts which replaces the ascorbate requirement for prolyl hydroxylase in a tritium release assay for reducing cofactor; correlation of its concentration with the extent of ascorbate-independent proline hydroxylation and the level of prolyl hydroxylase activity in these cells
Authors:B Peterkofsky  D Kalwinsky  R Assad
Institution:Laboratory of Biochemistry, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20205 USA
Abstract:Reductant used as cofactor for the prolyl hydroxylase reaction, was measured by a tritium release assay modified from an enzyme assay by making all components of the assay system saturating except for the reductant, but including prolyl hydroxylase. Reduced glutathione (6 mm), which had little activity as a cofactor, and thymol (0.1 mm), an antioxidant which exhibited no cofactor activity at all, were required for optimal proline hydroxylation dependent on reducing cofactor, with thymol fulfilling the previously described requirement for catalase. Ascorbate, cysteine and 6,7-dimethyltetrahydropterin were active as cofactors, in descending order of activity at equimolar concentrations, and activity was concentration dependent for all of these compounds. Sonicates of stationary phase L-929 cells which exhibit ascorbate-independent proline hydroxylation in culture contained reducing cofactor which could replace ascorbate in the cofactor assay, while sonicates of log phase cells which exhibit an ascorbate requirement in culture contained about one-third or less of that amount. NADH and NADPH, which themselves have little or no activity as cofactor, increased the cofactor activity of log phase cell sonicates but had relatively little effect on the activity of stationary cell sonicates suggesting that the cofactor is in a more reduced state in stationary phase. Within 24 h after replating dense, stationary phase cell cultures at low density, conditions where cells return to ascorbate dependence, prolyl hydroxylase activity had decreased to one-fifth the original activity while the concentration of functional reducing cofactor had decreased to less than 1% of its original concentration, largely as a result of oxidation. Ascorbate was not present in L-929 cells sonicates and the levels of tetrahydropterin and cysteine in sonicates could not account for the amount of cofactor activity exhibited by the sonicates in the assay system. Treatment of L-929 cultures with aminopterin did not decrease ascorbate independence, suggesting that tetrahydrofolate did not contribute significantly to cellular proline hydroxylation. These results suggest that an unidentified reductant present in L-929 cells can account for ascorbate-independent proline hydroxylation and also regulate prolyl hydroxylase activity in these cells and that cellular levels of reduced pyridine nucleotides may regulate the reduction state of this substance.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号