首页 | 本学科首页   官方微博 | 高级检索  
     


Skin mild hypoxia enhances killing of UVB-damaged keratinocytes through reactive oxygen species-mediated apoptosis requiring Noxa and Bim
Authors:Nys Kris  Maes Hannelore  Andrei Graciela  Snoeck Robert  Garmyn Maria  Agostinis Patrizia
Affiliation:Department Molecular and Cell Biology, Faculty of Medicine, Catholic University of Leuven, Belgium.
Abstract:The naturally occurring skin hypoxia has emerged as a crucial host factor of the epidermal microenvironment. We wanted to systematically investigate how reduced oxygen availability of the epidermis modulates the response of keratinocytes and melanocytes to noxious ultraviolet B radiation (UVB). We report that the exposure of normal human keratinocytes (NHKs) or melanocytes (NHEMs) to mild hypoxia drastically impacts cell death responses following UVB irradiation. The hypoxic microenvironment favors survival and reduces apoptosis of UVB-irradiated NHEMs and their malignant counterparts (melanoma cells). In contrast, NHKs, but not the transformed keratinocytes, under hypoxic conditions display increased levels of reactive oxygen species (ROS) and are significantly sensitized to UVB-mediated apoptosis as compared to NHKs treated under normoxic conditions. Prolonged exposure of UVB-treated NHKs to hypoxia triggers a sustained and reactive oxygen species-dependent activation of the stress kinases p38(MAPK) and JNKs, which in turn, engage the activation of Noxa and Bim proapoptotic proteins. Combined silencing of Noxa and Bim significantly inhibits UVB-mediated apoptosis under hypoxic conditions, demonstrating that hypoxia results in an amplification of the intrinsic apoptotic pathway. Physiologically occurring skin hypoxia, by facilitating the specific removal of UVB-damaged keratinocytes, may represent a decisive host factor impeding important steps of the photocarcinogenesis process.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号